In computing, symmetric multiprocessing or SMP involves a multiprocessor computer hardware architecture where two or more identical processors are connected to a single shared main memory and are controlled by a single OS instance. Most common multiprocessor systems today use an SMP architecture. In the case of multi-core processors, the SMP architecture applies to the cores, treating them as separate processors. Processors may be interconnected using buses, crossbar switches or on-chip mesh networks. The bottleneck in the scalability of SMP using buses or crossbar switches is the bandwidth and power consumption of the interconnect among the various processors, the memory, and the disk arrays. Mesh architectures avoid these bottlenecks, and provide nearly linear scalability to much higher processor counts at the sacrifice of programmability:

Serious programming challenges remain with this kind of architecture because it requires two distinct modes of programming, one for the CPUs themselves and one for the interconnect between the CPUs. A single programming language would have to be able to not only partition the workload, but also comprehend the memory locality, which is severe in a mesh-based architecture.

SMP systems allow any processor to work on any task no matter where the data for that task are located in memory, provided that each task in the system is not in execution on two or more processors at the same time; with proper operating system support, SMP systems can easily move tasks between processors to balance the workload efficiently.